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Abstract

Changes in the height of the tropopause provide a sensitive indicator of human ef-

fects on climate. A previous attempt to identify human effects on tropopause height

relied on information from ‘first-generation’ reanalyses of past weather observations.

Climate data from these initial model-based reanalyses have well-documented defi-

ciencies, raising concerns regarding the robustness of earlier detection work that em-

ployed these data. Here, we address these concerns using information from the new

second-generation ERA-40 reanalysis. Over 1979 to 2001, tropopause height increases

by nearly 200 meters in ERA-40, partly due to tropospheric warming. The spatial

pattern of height increase is consistent with climate model predictions of the expected

response to anthropogenic influences alone, significantly strengthening earlier detec-

tion results. Atmospheric temperature changes in two different satellite datasets are

more highly correlated with changes in ERA-40 than with those in a first-generation

reanalysis, thus illustrating the improved quality of temperature information in ERA-

40. Our results provide support for claims that human activities have warmed the

troposphere and cooled the lower stratosphere over the last several decades of the 20th

century, and that both of these changes in atmospheric temperature have contributed

to an overall increase in tropopause height.
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1 Introduction

Reanalyses are synthesized atmospheric states, derived by reprocessing sequences of

past weather observations using the data assimilation techniques developed to initi-

ate numerical weather forecasts (Trenberth and Olson, 1988; Bengtsson and Shukla,

1988). In situ and satellite-based measurements of atmospheric properties for a par-

ticular analysis time are used in a statistically optimal way to correct a short-term

forecast from the preceding analysis time. The numerical forecast model carries for-

ward in time and spreads in space the information from earlier observations. Sets of

observations that differ in accuracy and spatial and temporal coverage are thereby

blended into a regular set of gridded products suitable for a wide range of applications.

The first reanalysis products were completed in the mid-1990s at the European

Centre for Medium-Range Weather Forecasts (ECMWF) and the U.S. National Cen-

ter for Environmental Prediction (NCEP). ECMWF reanalysed weather observations

over the fifteen-year period from 1979 to early 1994 (Gibson et al., 1997). Out-

put from this project is commonly referred to as ERA-15 (ECMWF Re-Analysis).

NCEP and the National Center for Atmospheric Research (NCAR) jointly produced

a second reanalysis product (NCEP-50) spanning the 50+ years from 1948 to present

(Kalnay et al., 1996; Kistler et al., 2001). ERA-15 and NCEP-50 have been used for

such diverse purposes as climate model evaluation (Gates et al., 1999), investigation

of subseasonal and interannual variability (Sperber, 2003; Annamalai et al., 1999;

AchutaRao and Sperber, 2002) analysis of changes in extreme events (Kharin and

Zwiers, 2000), and climate change detection studies (Gillett et al., 2003; Santer et al.,

2003a).

3



The present paper focusses on the use of reanalyses for identification of human ef-

fects on climate. Reanalysis products have a number of advantages and disadvantages

for this specific purpose. Consider the advantages first:

• Reanalyses provide internally-consistent estimates of changes in climate: they

are uncontaminated by the changes in model physics and resolution that typi-

cally affect the secular behavior of operational analyses (Trenberth and Olson,

1988; Basist and Chelliah, 1997).

• Reanalyses offer spatially-complete information for many different atmospheric

variables. This facilitates the application of pattern-based “fingerprint” detec-

tion studies (Hasselmann, 1979; Barnett and Schlesinger, 1987; Santer et al.,

1995; Hegerl et al., 1996; Allen and Tett, 1999; Stott et al., 2000)1, particularly

for poorly-observed variables.

• The existence of multiple reanalyses, generated with different numerical weather

prediction models and data assimilation methods, enables assessment of the sen-

sitivity of detection results to current uncertainties in reanalysis-based estimates

of climate change (Santer et al., 2003a).

These advantages must be weighed against several deficiences:

• Climate data from reanalyses, especially the “first generation” ERA-15 and

NCEP-50 reanalyses, exhibit inhomogeneities related to temporal changes in

1Sampling complex, time-evolving patterns of climate change with in situ observational networks

that are spatially incomplete and vary over time can introduce non-trivial biases in global estimates

of surface and atmospheric temperature changes (Duffy et al., 2001; Santer et al., 2000a).
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the distribution, availability, and quality of assimilated satellite and radiosonde

information (see, e.g., K̊allberg et al., 1997; Basist and Chelliah, 1997; Pawson

and Fiorino, 1998; Santer et al., 1999; Trenberth et al., 2001). Observing system

changes introduce spurious non-climatic variability that is difficult to separate

unambiguously from the true low-frequency climate changes that are of interest

in detection work. One example is the transition to the widespread assimilation

of satellite-based temperature retrievals in NCEP-50, which induces step-wise

changes in such quantities as lower stratospheric temperature (Santer et al.,

1999) and the variability of the tropical Quasi-Biennial Oscillation (QBO; Paw-

son and Fiorino, 1999). Inhomogeneities related to observing system changes

are not restricted to the pre-satellite era (Trenberth et al., 2001; Santer et al.,

2004).

• The climate data output from reanalyses are also sensitive to a number of spe-

cific technical choices. These are related to the physics and resolution of the

selected numerical model, the properties and implementation2 of the data assim-

ilation system, and the procedures used to adjust for biases in the assimilated

data (Harris and Kelly, 2001).

This list of advantages and disadvantages indicates that reanalyses should not be

used uncritically in climate-change detection work; nor should they be entirely dis-

counted for such studies. Our perspective is that reanalyses provide a valuable tool for

2This encompasses decisions on the nature of the observational data streams that are actually

assimilated (e.g., whether temperature information is assimilated in the form of cloud-cleared ra-

diances or retrievals), the relative weights assigned to different types of observations, and whether

assimilated data are handled in a univariate or multivariate way (Dethof and Hólm, 2002).
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exploring the robustness of “fingerprint” detection results to plausible uncertainties in

current estimates of decadal-timescale climate change. However, some of the deficien-

cies noted above have raised concerns regarding the reliability of detection results that

are based on first-generation reanalysis products. A case in point is the study by San-

ter et al. (2003a) (henceforth SAN03), which identified a model-predicted fingerprint

of combined anthropogenic and natural influences in the tropopause height changes

estimated from ERA-15 and NCEP-50. Criticism of this paper by Trenberth (per-

sonal communication) has suggested that first-generation reanalyses are of insufficient

quality for identifying anthropogenically-induced increases in tropopause height. A

related comment on SAN03 by Pielke and Chase (2004) contends that NCEP-50 pro-

vides highly-reliable estimates of tropospheric temperature change. Pielke and Chase

note that the temperature changes driving tropopause height increases are quite dif-

ferent in NCEP-50 and in the climate model simulations analysed by SAN033, and

argue that this discrepancy invalidates the SAN03 detection results.

Here, we address these twin criticisms using data from the second-generation

ERA-40 reanalysis (Simmons and Gibson, 2000). ERA-40 uses a refined numerical

model with an advanced data assimilation system (Andersson et al., 1998; Simmons

and Hollingsworth, 2002) to produce new estimates of atmospheric variability over

the past 45 years. The ERA-40 project was completed by ECMWF in 2003, and

spans the period from September 1957 to August 2002. We employ climate data

from ERA-40 to address the following scientific questions:

1. Does the use of tropopause height changes inferred from ERA-40 confirm or

negate detection results previously obtained by SAN03 with the “first-generation”

3This point was noted earlier and assessed by Santer et al. (2003b) and SAN03.
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ERA-15 and NCEP-50 reanalyses?

2. Are the tropopause height increases in climate model and reanalysis data driven

by similar layer-average changes in stratospheric and tropospheric temperature?

3. How do the layer-average atmospheric temperature changes in first- and second-

generation reanalyses compare with temperature changes estimated from Mi-

crowave Sounding Units (MSUs) flown on polar orbiting satellites? Do such

comparisons illustrate evolutionary improvements in reanalysis skill?

4. Are decadal-timescale changes in pLRT , the pressure of the lapse-rate tropopause,

sensitive to the vertical resolution of the input atmospheric temperature data

used for calculating pLRT ?

The structure of this paper is as follows. In Section 2, we provide a brief in-

troduction to the reanalysis datasets employed in our detection study, and to the

observational satellite datasets used in addressing questions 2 and 3 above. Section

2 also introduces the Parallel Climate Model (PCM; Washington et al., 2000) with

which we define the expected spatial pattern of tropopause height change due to

anthropogenic effects. Methods applied for calculation of the tropopause pressure

and ‘synthetic’ MSU temperatures from reanalysis and climate model data are out-

lined in Section 3. Particular attention is devoted to the issue of the sensitivity of

estimated tropopause pressure changes to the vertical resolution at which the cal-

culation is performed. Changes in global means and spatial patterns of tropopause

pressure are discussed in Section 4. Section 5 describes results from the revisit of

the SAN03 tropopause height detection analysis with ERA-40 data. In Section 6, we

use temporal and spatial correlations to compare the processed and synthetic MSU
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temperatures in four different datasets. Conclusions and answers to the four scientific

questions posed above are given in Section 7.

2 Reanalysis, satellite, and model data

2.1 Reanalysis data

Full descriptions of the ERA-15, NCEP-50, and ERA-40 reanalysis projects are given

by Gibson et al. (1997), Kalnay et al. (1996), Kistler et al. (2001), Simmons and

Gibson (2000), and the reanalysis websites.4 Our aim here is to highlight some of the

principal differences between ERA-40 and earlier reanalyses. The first key difference

is that ERA-40 has higher horizontal and vertical resolution. The operational nu-

merical weather prediction (NWP) models in NCEP-50 and ERA-15 were run at T62

and T106 spectral truncation (respectively), while ERA-40 was run at T159 spectral

truncation with a grid resolution of roughly 125 km. ERA-40 employs a hybrid sigma-

pressure coordinate system with 60 vertical levels; the top model level is at 0.1 hPa

(ca. 65 km). Both NCEP-50 (28 levels) and ERA-15 (31 levels) had substantially

fewer levels in the vertical than ERA-40, lower top levels (ca. 3 hPa for NCEP-50

and 10 hPa for ERA-15), and a less extensive representation of the stratosphere.

The enhanced vertical resolution of ERA-40 is useful for exploring the sensitivity of

estimated pLRT changes to the number of model levels used in calculating pLRT (see

Section 3.1).

4http://wesley.wwb.noaa.gov (NCEP-50), http://www.ecmwf.int/research/era/ERA-15 (ERA-

15), and http://www.ecmwf.int/research/era (ERA-40).
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There are also important differences in the data assimilation systems. ERA-40

directly incorporates raw satellite radiances through a three-dimensional variational

data assimilation system (3D-Var) (Andersson et al., 1998). The 3D-Var scheme is

global, multivariate, and nonlinear. Implementation and subsequent refinement of

the variational assimilation scheme in ECMWF operations has yielded pronounced

increases in analysis accuracy and forecast skill (Andersson et al., 1998; Simmons and

Hollingsworth, 2002). ERA-15 used a 1D-Var scheme to assimilate a less-extensive

set of satellite radiances that had undergone many pre-processing steps.

Like ERA-40, NCEP-50 also used a 3D-Var scheme (Kalnay et al., 1996), but satel-

lite data were assimilated through temperature retrievals rather than radiances. The

retrievals were generated by the National Environmental Satellite Data and Informa-

tion Service (NESDIS), and incorporate information from several different satellite-

borne sensors.5 The NESDIS retrievals have documented biases in the temperature of

the tropical stratosphere (Mo et al., 1995) and in the temperature and static stability

of the troposphere (Kelly et al., 1991). These biases, together with changes in the

retrieval algorithms themselves, can induce spurious temporal variability (Basist and

Chelliah, 1997; Santer et al., 2004). The assimilation of satellite data is therefore fun-

damentally different in the three reanalyses, as are procedures for bias correction of

satellite and radiosonde information (Gibson et al., 1997; Kalnay et al., 1996; Harris

and Kelly, 2001; Andrae et al., 2004).

ERA-40 atmospheric temperature data required for pLRT and equivalent MSU

calculations were available on the model Gaussian grid at each of the 60 full model

5MSU, the Stratospheric Sounding Unit (SSU), and the High-Resolution Infrared Radiation

Sounder (HIRS).
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levels. ECMWF also interpolated model-level fields to 23 discrete pressure levels and

archived temperature data at this reduced vertical resolution (K̊allberg et al., 2004).

We made use of both the 60- and 23-level temperature datasets for computing pLRT ,

but calculated synthetic MSU temperatures with 23-level data only. Most calculations

employed monthly-mean data for the period January 1958 through December 2001,

although some six-hourly data were used to test the sensitivity of pLRT changes to the

temporal resolution of the input temperature data (see Section 3.1).

NCEP-50 atmospheric temperature data were interpolated from the T62 Gaussian

grid and 28 model levels to a regular 2.5◦×2.5◦ latitude-longitude grid and 17 discrete

pressure levels (spanning 1000-10 hPa). NCEP-50 data were available in the form

of monthly means for the period January 1948 through December 2001. ERA-15

data were not used for the present study given the relatively short duration of this

reanalysis.

2.2 Satellite data

To evaluate whether atmospheric temperature changes in ERA-40 are more reliable

than those in NCEP-50 (and hence whether tropopause height detection times esti-

mated from ERA-40 temperature data are more credible), we compare synthetic MSU

temperatures calculated from both reanalyses with the MSU temperatures processed

by Mears et al. (2003) of Remote Sensing Systems (RSS) and by Christy et al. (2003)

at the University of Alabama in Huntsville (UAH). Our focus is on MSU channels

4 and 2, which provide information on layer-average stratospheric and tropospheric
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temperatures.6 We refer to these temperatures as T4 and T2, respectively. We use

the most recent versions of the RSS and UAH T4 and T2 data (versions 1.2 for RSS

and 5.1 for UAH). Both datasets were available in the form of monthly means on a

regular 2.5◦ × 2.5◦ latitude-longitude grid, and span the period from January 1979

through December 2003.

RSS and UAH use different procedures to adjust the raw MSU radiances for

intersatellite biases, uncertainties in instrument calibration coefficients, changes in

instrument body temperature, and drift in sampling of the diurnal cycle (Mears et al.,

2003; Christy et al., 2003). These processing differences lead to divergent estimates

of T2 changes over 1979-2001: the troposphere warms by 0.09◦C/decade in RSS,

while the T2 trend in UAH is close to zero (Table 1). Discrepancies between the

RSS and UAH T2 changes strongly influence the detectability of model-predicted T2

fingerprints (Santer et al., 2003c).

2.3 Climate model data

Both our original SAN03 tropopause height detection study and the present work em-

ploy data from the Department of Energy Parallel Climate Model (PCM) developed

by NCAR and Los Alamos National Laboratory (Washington et al., 2000). In addi-

tion to climate change detection work (Santer et al., 2003c), PCM has been used for

a wide range of applications, including studies of forced changes in decadal variability

(Meehl et al., 2000), factors affecting the amplitude of simulated ENSO variability

(Meehl et al., 2001), the climate response to volcanic forcing (Ammann et al., 2003;

6The maxima of the weighting functions for MSU channels 4 and 2 are at roughly 74 and 595 hPa.
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Wigley et al., 2004) and the differential responses to solar and greenhouse-gas forcing

(Meehl et al., 2003).

We analyze two PCM experiments here. The first (ANTHRO) involves combined

changes in three anthropogenic forcings (well-mixed greenhouse gases, the direct scat-

tering effects of sulphate aerosols, and tropospheric and stratospheric ozone). The

second (ALL) additionally includes the effects of changes in solar irradiance and vol-

canic aerosols. Our earlier study considered only the ALL experiment. Here, we use

ANTHRO for detection purposes, while ALL is more relevant for direct visual com-

parison with observations. ALL commences in 1890, while ANTHRO starts in 1872.

Both end in 1999. Four realizations of each experiment were performed. Further

details of the model and imposed forcing changes are given in APPENDIX A.

Our fingerprint study requires model-based estimates of internally-generated cli-

mate noise for assessing statistical significance (APPENDIX B). These were obtained

from two 300-year control integrations performed with PCM and the ECHAM4/OPYC

model (“ECHAM”). Technical details of the ECHAM model are provided in Roeck-

ner et al. (1999) and in APPENDIX A. Previous work with ECHAM has shown

that tropopause height increases in anthropogenic climate-change experiments are

large and readily identifiable relative to the unforced variability of pLRT in the model

control run (Sausen and Santer, 2003; Santer et al., 2003b).
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3 Calculation of tropopause height and synthetic

MSU temperatures

3.1 Tropopause height

We diagnose changes in pLRT from reanalysis and model data by interpolation of the

lapse rate in a pκ coordinate system, where p denotes pressure, κ = R/cp, and R and

cp are the gas constant for dry air and the specific heat capacity of dry air at constant

pressure (Reichler et al., 2003). The algorithm identifies the threshold model level

at which the lapse rate falls below 2◦C/km, and then remains less than this critical

value for a specified vertical distance (World Meteorological Organization, 1957).

The exact pressure at which the lapse rate attains the critical value is determined

by linear interpolation of lapse rates in the layers immediately above and below the

threshold level. This definition of tropopause height is robust under most conditions.

Exceptions include situations where the atmosphere is relatively isothermal or where

multiple stable layers are present (Reichler et al., 2003).7 The algorithm is applied

in a consistent way to monthly-mean profiles of atmospheric temperature in PCM,

ECHAM, ERA-40, and NCEP-50.

Our previous work (Santer et al., 2003b) showed that calculations performed

with the 28- and 17-level temperature data from NCEP-50 yielded similar decadal-

timescale changes in global- and tropical-mean pLRT . Concerns remain, however, re-

garding the reliability of pLRT changes estimated from temperature data with coarse

7To avoid unrealistically high or low pLRT values, search limits are restricted to pressure levels

between roughly 600 and 75 hPa; the search proceeds upwards from 600 hPa.
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vertical resolution (Ramaswamy et al., 2001). To address these concerns, pLRT trends

in ERA-40 were calculated from temperatures archived at the reduced set of 23 pres-

sure levels and the full 60 model levels (Section 2.1).8 The latter dataset has higher

vertical resolution in the vicinity of the tropopause (see K̊allberg et al., 2004).

The 60-level (‘L60’) and 23-level (‘L23’) calculations yield similar estimates of

global-mean pLRT changes in ERA-40, with linear trends of −2.36 hPa/decade and

−2.66 hPa/decade (respectively) over 1979-2001 (Fig. 1a; Table 1).9 Both trends are

significantly different from zero when temporal autocorrelation effects are properly

accounted for (Santer et al., 2000b). The spatial fields of pLRT trends over this 23-

year period are also highly similar in the two calculations (Figs. 2a,b), with a pattern

correlation of rL60:L23 = 0.94. This is an encouraging result, particularly for our

pattern-based climate change detection work, since it illustrates that the large-scale

pattern of recent tropopause height change is relatively insensitive to the vertical

resolution of the temperature data used in pLRT calculations (at least in ERA-40).

The most pronounced pattern differences are in the tropics, where the L23 results

have small but spatially-coherent decreases in pLRT , while small pLRT trends of both

sign occur in the L60 case (Fig. 2). These slight differences are probably related to

the improved representation of the tropical tropopause in the L60 case.

We note that the primary detection conclusions described in Section 5 are insen-

sitive to our choice of L23 or L60 pLRT data. For consistency with pLRT calculations

8Model-level pressures near the tropopause depend only weakly on surface pressure; they were

calculated using monthly-mean values of surface pressure and the vertical coordinate definition

specified by K̊allberg et al. (2004).

9A decrease in pLRT signifies an increase in tropopause height.
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involving the (low vertical resolution) NCEP-50, PCM, and ECHAM data (see Ta-

ble 1), all ERA-40 pLRT results employed in our detection work are exclusively from

L23 calculations.

Highwood et al. (2000) and Reichler et al. (2003) have pointed out that pLRT is

often difficult to define at high latitudes in the Southern Hemisphere (SH), particularly

during SH winter. In the observation-sparse early years of ERA-40, this problem is

compounded by the model’s wintertime stratospheric cold bias in polar regions of

the SH, which can lead to an unrealistically high lapse-rate tropopause at individual

Antarctic grid points (see, e.g., the August result in Fig. 3). The ‘high tropopause’

problem becomes less severe in the satellite era, when improved observational data

constraints are introduced. The time-varying nature of the problem results in an

annual cycle with spuriously large pLRT anomalies in SH winter in the initial two

decades of the reanalysis (Fig. 1a). For this reason, data poleward of 60◦S were

excluded from the tropopause height fingerprint analysis (Section 5) and from all

subsequent calculations of spatially-averaged pLRT changes. This removes the spurious

annual cycle (c.f. Figs. 1a,b), thereby reducing the variance of the time series and the

standard error of the pLRT trend (Table 1). It also decreases differences between the

L23 and L60 results early in the period. Averaging over 90◦N-60◦S has the additional

efffect of decreasing the global-mean pLRT trends themselves, since large pLRT decreases

occur poleward of 60◦S (Fig. 2).

Finally, we examined the sensitivity of ERA-40’s decadal-timescale pLRT trends

to the temporal resolution of the input temperature data. As is the case with data

from radiosondes (Highwood and Hoskins, 1998) and NCEP-50 (Santer et al., 2003b),

ERA-40 pLRT trends computed from monthly-mean temperature data are similar to
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trends calculated from six-hourly data. This justifies our use of monthly-mean data

for determining tropopause height changes.

3.2 Synthetic MSU temperatures

We use a static global-mean weighting function to compute synthetic MSU T4 and T2

temperatures from both climate model and reanalysis data (Santer et al., 1999). This

procedure facilitates the ‘like with like’ comparison of synthetic MSU temperatures

with the MSU data processed by RSS and UAH. The appropriate weighting function is

applied to grid-point profiles of monthly-mean pressure-level temperatures in PCM,

ERA-40, and NCEP-50. For global and hemispheric means, this approach yields

results similar to those obtained with a complex radiative transfer code (Santer et

al., 1999).

Locally, surface emissivity effects and large temporal changes in atmospheric mois-

ture can yield differences between the equivalent T2 temperatures estimated with the

static weighting function and full radiative transfer approaches. This is not a signifi-

cant problem for our comparison of models and reanalyses, since we use a consistent

approach for calculating synthetic MSU temperatures from these two types of data.

However, comparisons of the synthetic and processed MSU T2 data should be made

with caution over elevated terrain, particularly over the ice-covered surface of Antarc-

tica.
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4 Tropopause height changes in reanalyses and PCM

4.1 Global-mean changes

The height of the tropopause shows a sustained multidecadal increase since the early

1960s (Fig. 4). This overall increase is evident in ERA-40, NCEP-50, and the PCM

ALL experiment.10 Superimposed on this increase are short-term height decreases

in response to explosive volcanic eruptions. The pLRT changes after the eruptions of

Mt. Agung (1963), El Chichón (1982), and Pinatubo (1991) are invariably larger in

ALL than in either reanalysis, primarily due to the excessive stratospheric warming

responses in PCM (Fig. 5). This is a common deficiency in models with coarse vertical

resolution in the stratosphere (see, e.g., Bengtsson et al., 1999).

Another relevant factor in the comparison of volcanic pLRT responses is that ALL

includes estimates of volcanic aerosol forcing and explicitly considers the aerosol’s

radiative effects (Ammann et al., 2003), while NCEP-50 and ERA-40 do not incorpo-

rate observed estimates of volcanic aerosol properties. In both reanalyses, information

on the climate signatures of volcanic eruptions is obtained indirectly through the as-

similated satellite and in situ data. During eruptions in the pre-satellite era, such

as that of Agung in 1963, the sparse coverage of available radiosonde data may bias

reanalysis-based estimates of volcanically-induced climate signals, thus contributing

to pLRT differences between reanalyses and PCM.

10Note that ERA-40 diverges markedly from NCEP-50 prior to roughly 1975, during the period

when observational coverage is relatively sparse and does not provide as strong a constraint on the

reanalyses.
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ERA-40 shows a pronounced lower stratospheric warming in 1975 (Fig. 5). Al-

though a slight warming may have taken place in reality due to the eruption of Mt.

Fuego in October 1974, the stratospheric warming in ERA-40 stems primarily from

an error in the bias correction of radiances from the Vertical Temperature Profiler

Radiometer (VTPR) on the NOAA-4 satellite, which were assimilated during 1975

and the first half of 1976. Bias correction coefficients computed for VTPR data from

the NOAA-3 satellite were inadvertently applied in adjusting NOAA-4 VTPR data.

The error had largest impact in the Southern Hemisphere stratosphere, but is also

evident in the global mean of the synthetic T2 data for ERA-40 (see Fig. 9 below).

Figure 6 provides a simple conceptual model for interpreting the low- and high-

frequency pLRT changes shown in Fig. 5 (see also Highwood et al., 2000, who use a

similar conceptual model). Calculations performed with radiative-convective models

and more complex atmospheric GCMs illustrate that stratospheric cooling and tro-

pospheric warming are robust signals of increases in atmospheric CO2 (e.g., Hansen

et al., 1984, 2002; Manabe and Wetherald, 1987; Ramaswamy et al., 1996, 2001).

These temperature changes tend to increase tropopause height. Anthropogenically-

induced depletion of stratospheric ozone also causes a net increase in tropopause

height through strong cooling of the stratosphere.11 Alternately, volcanic aerosols

injected into the stratosphere absorb incoming solar radiation and outgoing longwave

radiation, thus warming the stratosphere and cooling the troposphere. Both of these

changes decrease tropopause height (Fig. 6).

11Depletion of stratospheric ozone cools the stratosphere and the troposphere. These changes have

effects of opposite sign on tropopause height. The stratospheric cooling influence predominates, so

the net effect of ozone depletion is to raise tropopause height. In PCM, tropospheric ozone increases

warm the troposphere and also contribute to tropopause height increases.
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The actual temperature perturbations associated with these three forcings are

more complex as a function of latitude and altitude than the idealized changes il-

lustrated in Fig. 6 (e.g., Bengtsson et al., 1999; Hansen et al., 2002; Santer et al.,

2003b). We note, however, that the global-scale pLRT changes in PCM, NCEP-50,

and ERA-40 are qualitatively consistent with this simple conceptual model.

Our quantitative comparisons of pLRT changes in ERA-40 and NCEP-50 focus

on 1979-2001. This period is characterized by a relatively stable observing system,

and by higher quantity and quality of assimilated observations. PCM ALL results are

given for the period 1979-1999.12 In ERA-40, pLRT decreases by 2.12 hPa/decade over

1979-2001 in the L23 calculation, corresponding to an overall increase in global-mean

tropopause height of roughly 200 meters. The pLRT decrease of 1.79 hPa/decade in

NCEP-50 corresponds to a height increase of approximately 170 meters. Both trends

are significantly different from zero at the 1% level (Table 1), and are consistent with

height increases inferred directly from radiosondes (Highwood et al., 2000; Seidel et

al., 2001). The PCM trend of −1.13 hPa/decade over 1979-1999 is smaller than in

either reanalysis, in part due to the model’s overestimated stratospheric warming in

response to El Chichón and Pinatubo (see Figs. 5,6).

4.2 Spatial patterns

Despite their use of very different assimilation systems, input satellite data, and bias

correction schemes, ERA-40 and NCEP-50 have striking similarities in their spatial

patterns of tropopause height change (Figs. 7a-d). Both show increases in height

12Recall that the ALL experiment ends in 1999.
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over most of the globe. These increases are small in the tropics, and are largest at

high latitudes in the Southern Hemisphere. It is notable that pattern similarities

are not restricted to 1979-2001 (Figs. 7c,d), but are also evident over the longer

(and observationally less well-constrained) 1958-2001 period, particularly between

30◦N-60◦N, where radiosonde coverage is relatively dense (Figs. 7a,b). The largest

differences between ERA-40 and NCEP-50 are poleward of 45◦S, where radiosonde

coverage is poor; height increases here are more coherent in ERA-40 than in NCEP-

50 (c.f. Figs. 7a,b and 7c,d). There are also prominent differences off the coast of

California (Figs. 7c,d).

The large-scale patterns of pLRT change over 1979-1999 in the PCM ALL and

ANTHRO experiments are qualitively similar to those in the two reanalyses, with

coherent height increases over most of the globe (c.f. Figs. 7e,f and 7c,d). As in

ERA-40 and NCEP-50, increases are small and relatively unstructured in the tropics,

and largest poleward of 45◦S. In both model and reanalysis results, pLRT changes tend

to be noisy at the transition from the tropical to the extratropical tropopause. The

similarity between the spatial fields of pLRT change in the ALL and ANTHRO experi-

ments (Figs. 7e,f) arises because both patterns are driven primarily by anthropogenic

forcing, at least in PCM (see SAN03 and Section 5).

5 Fingerprint detection results

We next used the ensemble-mean pLRT changes from the PCM ANTHRO experiment

to define the expected signal in response to anthropogenic forcing. This is referred to

here as the “fingerprint” pattern, �f . We applied a standard method to search for an
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increasing expression of �f in ERA-40 and NCEP-50 pLRT data, and to estimate the

‘detection time’ – the time at which �f becomes consistently identifiable at a stipulated

5% significance level (Hasselmann, 1979; Santer et al., 1995; SAN03). Details of the

method are given in APPENDIX B. We consider the sensitivity of our detection

results to different processing options. Detection times are a function of:

• Reanalysis dataset (ERA-40 or NCEP-50).

• Fingerprint pattern. We use either the ‘raw’ fingerprint, �f , or the optimized

fingerprint, �f ∗. The latter is rotated away from high-noise directions in an

attempt to enhance signal-to-noise ratios and fingerprint detectability.

• The model control run (ECHAM or PCM) used for optimizing �f and assessing

statistical significance.

• Treatment of spatial-mean pLRT changes (spatial mean included or removed).

Removal of the spatial mean ensures that positive detection results cannot be

driven solely by large mean changes, and focusses attention on the correspon-

dence between sub-global aspects of pLRT changes in PCM and reanalyses (see,

e.g., Hegerl et al., 1996; Santer et al., 2003c).

As noted previously, large, abrupt changes in the availability of satellite-based

data on atmospheric temperature, moisture, and winds can introduce non-climatic

variability in reanalysis products (Section 2.1). To minimize the impacts of such

spurious variability on our detection study, we use only post-1978 reanalysis data.

Additionally, restricting our attention to a 90◦N-60◦S spatial domain largely elimi-

nates the twin problems of poorly-defined and unrealistically high pLRT values over
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the Antarctic continent (Section 3.1). Finally, we note that although SAN03 also used

NCEP-50 pLRT data, our detection analysis differs from theirs in its spatial domain

and in its use of the PCM ANTHRO experiment to define the searched-for tropopause

height fingerprint.13

Our detection results support the conclusions that SAN03 obtained with pLRT

data from first-generation reanalyses, and confirm that there has been an identifiable

human influence on tropopause height over the past several decades. This finding is

insensitive to statistical analysis details (Fig. 8). For each reanalyis dataset, there

are 8 possible detection time estimates. The ANTHRO pLRT fingerprint can be suc-

cessfully identified in all 8 cases involving ERA-40 data, and in 7 of 8 cases that use

NCEP-50 data. These results reflect similarities between the large-scale patterns of

pLRT change in ERA-40, NCEP-50, and PCM, such as their common spatial coherence

and hemispheric asymmetry (c.f. Figs. 7c-f).

Positive detection of �f is not due solely to the large global-mean height increases

in PCM and reanalyses (Fig. 4). This is evident when spatial mean pLRT changes are

removed, and the smaller-scale hemispheric asymmetry component of the fingerprint

is emphasized. The ‘mean removed’ version of �f is identifiable 6-8 years earlier in

ERA-40 than in NCEP-50, in part because the large height increases poleward of

45◦S are more coherent in ERA-40 than in NCEP-50 (c.f. Figs. 7c,d), and are more

similar to pLRT changes in PCM. Removing the mean has little effect on detection

times for ERA-40, but significantly degrades detection times for NCEP-50.

13The spatial domain in SAN03 was 85◦N-85◦S, and they relied on the PCM ALL experiment to

define �f .
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As noted above, our previous detection work (SAN03) employed the PCM ALL

integration (rather than ANTHRO) to define �f . The pLRT fingerprint is very similar

in ANTHRO and ALL, reflecting the overall increase in tropopause height that is

common to both experiments. In PCM, this increase is mainly driven by changes

in well-mixed greenhouse gases and stratospheric ozone (included in both ANTHRO

and ALL), and not by changes in solar irradiance and/or volcanic aerosols (included

in ALL only). This is why use of the ANTHRO and ALL pLRT fingerprints yields

similar detection results. Positive identification of the ANTHRO fingerprint confirms

that we are primarily identifying anthropogenic effects.

6 Analysis of synthetic MSU temperatures

6.1 Synthetic MSU temperatures in ERA-40 and PCM

As discussed above, both stratospheric cooling and tropospheric warming tend to in-

crease tropopause height (Fig. 6; Section 4.1). In SAN03, we found that the height

increase in NCEP-50 over 1979-2001 was driven by stratospheric cooling only, whereas

recent height increases in PCM and ERA-15 were due to the combined effects of tro-

pospheric warming and stratospheric cooling. We speculated that the tropopause

height increase in NCEP-50 was partly the result of compensating errors, with exces-

sive stratospheric cooling (related to the assimilation of biased temperature retrievals)

offsetting the height decrease induced by a spurious cooling of NCEP’s troposphere

Santer et al., 2004). It is important, therefore, to determine whether our positive

identification of the PCM tropopause height fingerprint in ERA-40 arises from partly
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compensating errors (as in the NCEP-50 case) or from real similarities in model and

reanalysis profiles of atmospheric temperature change.

We address this issue by comparing synthetic MSU temperature trends in ERA-40

and PCM ALL. Over 1979-2001, the stratosphere cools by 0.30◦C/decade in ERA-40;

its troposphere warms by 0.08◦C/decade (Table 1; Figs. 5,9). These results are similar

to (and statistically consistent with) T4 and T2 trends in the PCM ALL experiment.

This confirms that recent tropopause height increases in PCM and ERA-40 are being

driven by similar global-scale atmospheric temperature changes both above and below

the tropopause.

It is also instructive to compare the low-frequency variability of T2 changes in

ERA-40 and the ALL experiment (Fig. 10). The four realizations of ALL repre-

sent four different manifestations of natural internal variability, each superimposed

on the underlying climate response to combined anthropogenic and natural forcings.

The ALL realizations define an ‘envelope’ of possible changes in tropospheric tem-

perature. The low-frequency T2 changes in ERA-40 are generally contained within

this envelope.14 Even aspects of the sub-decadal variability of T2 in ERA-40, such

as the cooling responses to the Agung, El Chichón, and Pinatubo eruptions, are

well-reproduced by the ensemble-mean T2 changes in ALL. This constitutes a more

stringent test of PCM’s performance than comparison of trends alone.

14During times of major El Niño or La Niña events, high-frequency T2 changes in ERA-40 are

often outside PCM’s envelope of inter-realization variability (Fig. 10). This is because the phasing

of El Niño and La Niña events is not the same in the real world and in a coupled model experiment,

except by chance. ERA-40 is also outside the PCM variability envelope for most of 1975, when it

was affected by the VTPR bias correction error noted earlier (Section 4.1).
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6.2 Comparison with processed MSU temperatures

To evaluate whether T4 and T2 changes in ERA-40 are more reliable than those

in NCEP-50 (and hence whether tropopause height detection times estimated from

ERA-40 are more credible), we compare synthetic MSU temperatures calculated from

both reanalyses with the RSS and UAH MSU temperatures processed by Mears et al.

(2003) and Christy et al. (2003) (Section 2.2). We analyze both temporal correlations

between time series of global-mean temperature changes, and spatial correlations

between patterns of temperature trends.

6.2.1 Temporal correlations

Despite fundamental differences in how Mears et al. (2003) and Christy et al. (2003)

process raw MSU T4 and T2 radiances, global-mean atmospheric temperature changes

in RSS and UAH are more highly correlated with each other than with the synthetic

MSU changes in either reanalysis (Table 2). This conclusion holds for both T2 and

T4 changes, and for correlations calculated with and without the overall linear trend

(which emphasize low- and high-frequency components of the time series, respec-

tively).

Another general result is that atmospheric temperature changes in the two ob-

servational MSU datasets correlate more highly with ERA-40 than with NCEP-50.

In fact, ERA-40 invariably correlates better with RSS and UAH than it does with

NCEP-50, and the lowest ‘between-dataset’ correlations always involve NCEP data

(Table 2). This is probably due to spuriously large cooling in NCEP’s lower strato-

spheric temperatures (Fig. 5; Table 1), which is introduced both by the assimilation
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of biased NESDIS temperature retrievals (Section 2.2) and by the transition from

MSU to the Advanced MSU instrument in the late 1990s (Santer et al., 2004). Be-

cause of the non-negligible stratospheric contribution to T2 (Fu et al., 2004), NCEP’s

excessive stratospheric cooling ‘leaks’ into its synthetic T2 temperature, contributing

to the unrealistically large negative T2 trend in this dataset (−0.11◦C/decade; Fig. 9;

Table 1).

6.2.2 Spatial correlations

Patterns of linear trends in T2 are qualitatively similar in ERA-40, RSS, and UAH

(Figs. 11a-c). All show coherent warming over most of the Northern Hemisphere

and cooling over the central Pacific and northern Siberia. Tropospheric temperature

trends in these three datasets differ poleward of 45◦S, where UAH cools markedly,

RSS cools moderately, and ERA-40 has no net cooling. These differences are not

fully understood, although differences in the treatment of surface emissivity effects

over snow- and ice-covered surfaces are likely to be a contributory factor. The large-

scale patterns of stratospheric cooling are similar in ERA-40, RSS, and UAH, with

maximum cooling at high latitudes in the Southern Hemisphere, and cooling minima

(or even slight warming) over the central Pacific, Alaska, and the South Indian Basin

and Ross Sea (Figs. 12a-c). NCEP’s T2 and T4 changes (Figs. 11d, 12d) are distinctly

different from those in ERA-40 and the two satellite datasets, with more coherent

tropospheric cooling, and stronger cooling of the tropical and subtropical stratosphere.

Possible reasons for this behavior were discussed in Section 6.2.1. PCM’s patterns

of T2 and T4 trends (Figs. 11e, 12e) are more similar to those in ERA-40, RSS and

UAH than to NCEP’s trend patterns.
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Pattern correlations help to quantify these comparisons (Table 3). Correlations

are calculated both with and without inclusion of the spatial means; these statistics

are referred to as c and r, respectively (Barnett and Schlesinger, 1987). Removal

of spatial means can reveal smaller-scale pattern similarities and/or differences that

may be obscured by global-mean trend differences between two datasets. This is

the case with T2 changes in the two reanalyses, for which c{NCEP:ERA} = −0.08,

while r{NCEP:ERA} = 0.74. The lower value for c arises from large differences in the

global-mean trends. In contrast, removal of spatial-mean T4 changes in NCEP-50

and ERA-40 degrades pattern similarity, pointing towards differences in the smaller-

scale spatial structure of their stratospheric temperature trends (c{NCEP:ERA} = 0.86,

r{NCEP:ERA} = 0.41; Figs. 12a,d).

For ‘observed’ (RSS and UAH) and synthetic MSU temperatures, correlations be-

tween the spatial patterns of trends yield three key results: 1) Despite fundamental

differences in their satellite data adjustment procedures, atmospheric temperature

changes in RSS and UAH are more similar to each other than to changes in either

reanalysis dataset; 2) Temperature changes in the two reanalyses are more similar to

changes in observed satellite data products than they are to each other; 3) Tempera-

ture changes in RSS and UAH are consistently more highly correlated with those in

ERA-40 than with changes in NCEP-50. All three findings hold for both T2 and T4,

and for ‘mean included’ and ‘mean removed’ correlations.
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7 Conclusions

In Section 1, we posed four scientific questions. The first dealt with the robust-

ness of the tropopause height detection results obtained by Santer et al. (2003;

“SAN03”). SAN03 claimed that they could identify a model-predicted “fingerprint”

of externally-forced tropopause height changes in the first-generation ERA-15 and

NCEP-50 reanalyses. Deficiencies in these early reanalysis products prompted justifi-

able questions regarding the reliability of these detection claims (Trenberth, personal

communication).

We addressed this criticism here by revisiting the SAN03 tropopause height de-

tection study with the second-generation ERA-40 reanalysis (Simmons and Gibson,

2000), which differs from the earlier ERA-15 and NCEP-50 reanalyses in a number

of important aspects (Section 2.1). The PCM fingerprint of anthropogenically-forced

tropopause height changes was statistically identifiable in ERA-40 pLRT data, confirm-

ing the conclusions of SAN03. The ERA-40 detection results were robust to a number

of choices made in implementing and applying our fingerprint method (Section 5).

The second question focussed on the atmospheric temperature changes that in-

fluence tropopause height increases. Previous work showed that both stratospheric

cooling and tropospheric warming can raise the height of the tropopause (Highwood et

al., 2000; Santer et al., 2003b; Fig. 6). Although SAN03 identified the PCM ALL fin-

gerprint in NCEP-50 pLRT data, the temperature changes driving this positive result

were very different: the troposphere warmed in ALL, but cooled markedly in NCEP-

50 (Table 1). This discrepancy raised further concerns regarding the reliability of the

SAN03 detection claims (Pielke and Chase, 2004).
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Santer et al. (2004) speculated that the positive NCEP-50 detection results could

be explained by error compensation, related to NCEP’s excessive stratospheric cooling

(Section 6). ERA-40 provides some support for this interpretation. In ERA-40, as

in PCM ALL, the troposphere warms and stratosphere cools over the last several

decades, and both effects contribute to an increase in tropopause height. Unlike

in the NCEP-50 case, overall tropopause height increases in PCM and ERA-40 are

dictated by similar large-scale changes in atmospheric temperature.

The third question addressed the relative reliability of synthetic MSU tempera-

tures in NCEP-50 and ERA-40, and hence the relative reliability of detection results

based on these datasets. It considered whether processed satellite data, such as the

RSS and UAH MSU products (Mears et al., 2003; Christy et al., 2003), can be used

to evaluate the fidelity with which ERA-40 and NCEP-50 simulate changes in T4 and

T2. One problem with such comparisons is that processed and synthetic MSU data

are not strictly independent: both reanalyses assimilate MSU information, either in

the form of radiances (ERA-40) or MSU-based temperature retrievals (NCEP-50).

Although independence is a valid concern (and one that is difficult to address

without systematic observing system experiments), we note that the estimates of

decadal-timescale T2 and T4 changes are generated in fundamentally different ways

in reanalyses and processed satellite data. ERA-40 and NCEP-50 rely on bias cor-

rection procedures (Kalnay et al., 1996; Harris and Kelly 2001) and the assimilation

system itself to correct for the satellite data problems that are identified and ad-

justed for by RSS and UAH. RSS and UAH make such adjustments in a univariate

sense, using MSU radiance information only. In contrast, the multivariate assimi-

lation procedures in ERA-40 and NCEP-50 seek to achieve physical consistency be-

29



tween different analysed variables, such as temperature and wind fields, and utilize

multivariate observational information from radiosondes, aircraft, surface data, and

a variety of satellite-based sensors. There are many factors, therefore, that can con-

tribute to differences between the synthetic MSU temperatures in reanalyses and the

MSU temperatures processed by RSS and UAH.

It is encouraging that current satellite-based estimates of T4 and T2 changes –

despite the large uncertainties in these estimates (Mears et al., 2003; Christy et al.,

2003) – invariably agree better with temperature changes in the second-generation

ERA-40 reanalysis than with those in the earlier NCEP-50 reanalysis. This suggests

that evolutionary improvements in reanalysis data assimilation systems have demon-

strably improved the quality of estimated atmospheric temperature changes, thus

answering our third question.

We note, however, that ERA-40 still manifests inhomogeneities, such as unreal-

istically large stratospheric warming in the mid-1970s related to an error in the bias

correction of the NOAA VTPR radiances (Fig. 5). This does not affect our detection

analysis, which uses post-1978 data. By restricting our attention to the post-1978

portion of ERA-40, we also reduce the impact of changes in the availability of in situ

data.

Even the post-1978 period, however, is not completely devoid of data homogeneity

problems. For example, comparisons with radiosonde data and with an AMIP simula-

tion that employed the ERA-40 model indicate that ERA-40’s tropical temperatures

at 100 hPa are biased cold in 1979 and the first half of the 1980s. This is due to

difficulties in the assimilation of radiance data from the early TOVS (TIROS Oper-

ational Vertical Sounder) satellites, which probably resulted in an overestimation of
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the warming trend in the upper tropical troposphere from 1979 to 2001, and a T4

cooling trend that is weaker than that of RSS and UAH in the tropics (Fig. 12). Min-

imizing the spurious climate signatures of inter-satellite biases and temporal changes

in satellite data availability will remain a significant challenge, both for reanalyses

and for groups that directly process satellite data (such as RSS and UAH).

The final question that we posed dealt with the sensitivity of estimated tropopause

pressure changes to the vertical resolution of the temperature data used in calculating

pLRT . ERA-40 supplies an ideal test-bed for addressing this concern. Temperature

data from ERA-40 were available at both high (L60) and low (L23) vertical resolution.

The L60 and L23 calculations yielded similar global-mean pLRT changes, and (more

importantly for our fingerprint detection work) similar patterns of tropopause height

increase (Figs. 1,2). Our detection conclusions are not sensitive to this source of

uncertainty.15

In summary, our study has identified a model ‘fingerprint’ of anthropogenically-

forced tropopause height changes in ERA-40 data, and indicates that pLRT changes

inferred from ERA-40 cannot be accounted for by natural variability alone. This

confirms and improves upon an earlier result that SAN03 obtained with pLRT changes

inferred from NCEP-50, and shows that our tropopause height findings are robust to

uncertainties in existing reanalysis products. Recent increases in tropopause height

in ERA-40 and the PCM ALL experiment are occurring for the same reasons – large-

scale stratospheric cooling and tropospheric warming. Our comparisons between ob-

15We also verified that the positive detection results obtained in SAN03 are not an artefact of the

large pLRT changes poleward of 60◦S, where the lapse-rate tropopause is difficult to define and is

influenced by model errors (Section 3.1).
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served and reanalysis-derived estimates of atmospheric temperature change suggest

that pLRT detection results based on ERA-40 data are more reliable than those ob-

tained with NCEP-50.
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APPENDIX A

Forcings and model details

The PCM ALL and ANTHRO experiments provide estimates of expected changes

in pLRT . Full details of the historical forcings used in these integrations are given

elsewhere (Dai et al., 2001; Washington et al., 2000; Kiehl et al., 1999). Here, it is

sufficient to note that the anthropogenic forcings in ALL and ANTHRO are identical

to those employed in experiments with the NCAR Climate System Model (CSM;

Dai et al., 2001). Of relevance for detection studies is the neglect of indirect sulfate

aerosol forcing (see, e.g., Stott et al., 2003), the absence of forcing by black and organic

carbon (Hansen et al., 2002), and the (unrealistic) assumption that the spatial pattern

of SO2 emissions is time invariant (except over the seasonal cycle), and can be scaled

by estimates of historical changes in global-mean SO2 emissions.16

Natural external forcings were treated as follows. Total solar irradiance changes

were prescribed according to Hoyt and Schatten (1993), updated as in Meehl et al.

(2003), with no wavelength dependence of the forcing. Volcanic forcing was based on

estimates of total sulfate loading and a simplified model of aerosol distribution and

decay (Ammann et al., 2003).

Both PCM and the ECHAM model (the latter was used exclusively for estimating

internally-generated climate noise) were run with T42 spectral truncation in their at-

16This assumption is likely to be more serious for detection work focusing on century-timescale

changes than for our analysis, which relies on post-1979 pLRT changes. This is because variations in

the spatial pattern of SO2 emissions are larger over the 20th century than over the past 25 years.
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mospheric model components, which is equivalent to a horizontal resolution of roughly

250-300 km in the tropics. PCM and ECHAM use 18 and 19 atmospheric levels re-

spectively. PCM’s ocean model component has relatively high spatial resolution,

with 32 vertical layers and 2/3◦ × 2/3◦ horizontal resolution, decreasing to 0.5◦ at

the equator. The ECHAM ocean model has coarser vertical resolution (11 vertical

layers) and coarser horizontal resolution poleward of 36◦ (2.8◦ × 2.8◦). Like PCM,

ECHAM’s ocean resolution decreases to 0.5◦ at the equator.
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APPENDIX B

Fingerprint Detection Procedure

a. Definition of fingerprint

Let �s (t) represent the time-evolving patterns of annual-mean pLRT from a realization

of the PCM ANTHRO experiment, expressed as anomalies relative to the smoothed

ANTHRO initial state (1890-1909). The arrow denotes a vector in p-dimensional

space, where p is the total number of model grid-points; t is time in years. The

fingerprint �f is computed from the ensemble-mean �s (t) data for the full period of

the ANTHRO experiment (1890-1999), after first regridding to a 10◦ latitude × 10◦

longitude grid and excluding data poleward of 60◦S (see Fig. 1). We define �f as the

first EOF, which explains a substantial fraction of the overall variance of �s (t): 60%

for the ‘mean included’ analysis, and 29% for the ‘mean removed’ case. Possible low-

frequency changes in the signal pattern are not accounted for (Wigley et al., 1998),

as they would be in an approach using space-time EOFs (Stott et al., 2000).

b. Estimation of detection time

We use a standard “fingerprinting” technique (Hasselmann 1979; Santer et al., 1995)

to determine detection time – the time at which the fingerprint �f becomes consistently

identifiable at some stipulated significance level. Our method relies on the defined

fingerprint �f (see above), on annual-mean ‘observational’ data, �o (t) (NCEP-50 or

ERA-40), and on control integrations, �c (t) and �c1(t) (PCM and ECHAM). Reanalysis
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data are expressed as anomalies relative to 1979-2001; control anomalies are defined

relative to the mean of the full 300-year integrations.

Two forms of detection time are computed: non-optimized (‘raw’) and optimized.

To define raw detection times, �o (t) and �c1(t) are projected onto the fingerprint �f ,

yielding (respectively) a test statistic time series Z(t) and a ‘signal free’ time series

N(t). We fit least-squares linear trends of increasing length L to Z(t), and then

compare their slope parameters with the distribution of L-length trends in N(t) until

the trend exceeds and remains above the 5% significance level. The test is one-tailed

and we assume a Gaussian distribution of trends in N(t). Detection time is referenced

to 1979, which marks the start date of more widespread satellite data assimilation in

both reanalyses (Kalnay et al., 1996; Simmons and Gibson, 2000). We use a minimum

trend length of 10 years, so the earliest possible detection time is in 1988.

Optimized detection times are determined similarly, but involve projection of �o (t)

and �c1(t) onto �f ∗
m, a version of the fingerprint that has been rotated away from high

noise directions. This rotation is performed in the subspace of the first m EOFs of

�c (t), where m is the ‘truncation dimension’. We explore the sensitivity of optimized

detection times by using three different values of m (5, 10, and 15). Our basic

conclusions are insensitive to this choice, and Fig. 8 shows results for the m = 15 case

only. Full details of the detection method are given in Santer et al., (1995).

Given the short observational record lengths, we use only the spatial properties

of signal and noise in rotating �f . Other detection work involving longer datasets

with more temporal structure has employed both spatial and temporal information

for fingerprint optimization (Stott et al., 2000). In the eight cases shown in Fig. 8,

optimization leaves detection times unchanged in four cases, improves detection time

45



in one case, and degrades detection time in three cases.

One possible explanation for the failure of optimization to consistently improve

detection times is that important components of the fingerprint may be lost in project-

ing �f onto the subspace of only the first m control run EOFs. Significant differences

between the noise used for optimizing �f and the noise used for calculating natural

variability statistics can also reduce the effectiveness of optimization.

c. Analysis with mean removed

In the ‘mean removed’ case, time-varying spatial means of the ensemble-mean PCM

ANTHRO anomalies are removed (from each grid-point, and at each time) prior to

calculation of EOFs and �f . Time-varying spatial means are also subtracted from

�o (t), �c (t), and �c1(t).

d. Sensitivity to significance level

Our detection times are not strongly sensitive to the choice of significance threshold.

While we have used a nominal 5% significance threshold here, a more conservative

test with a 1% significance threshold yields very similar results.
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Table 1: Statistics for time series of changes in pLRT , T4, and T2. Results for re-

analyses, RSS and UAH were calculated using monthly-mean anomalies spanning the

276-month period from January 1979 through December 2001. Anomalies are rela-

tive to climatological monthly means for this period. PCM statistics were computed

over January 1979 through December 1999, and are averages of results for the four

ALL realizations. pLRT anomaly data are either global means or spatial averages over

90◦N-60◦S (see Section 3.1). All T4 and T2 anomalies are global means. The vertical

resolution of the atmospheric temperature data used for pLRT , T4, and T2 calcula-

tions is indicated in the ‘Levels’ column. Trends and 1σ trend standard errors are in

◦C/decade (T4, T2) or in hPa/decade (pLRT ). The lag-1 autocorrelation of the time

series (AR-1) was used to adjust standard errors for temporal autocorrelation effects

(Santer et al., 2000). Due to their high AR-1 values and small effective sample sizes,

adjusted standard errors could not be calculated reliably for PCM T4 data. Stan-

dard deviations are in ◦C (T4, T2) or hPa (pLRT ). One, two, or three asterisks denote

trends significantly different from zero at the 10%, 5%, or 1% levels (respectively);

tests are one-tailed. pLRT data were available from reanalyses and PCM only.

Table 2: Correlations between time series of global-mean monthly-mean atmospheric

temperature anomalies for four different datasets. Correlations were calculated over

the 276-month period from January 1979 through December 2001, and were computed

from both the raw anomaly data and linearly detrended data (underlined).

Table 3: Correlations between the spatial patterns of atmospheric temperature

change in reanalysis and satellite datasets. Pattern correlations were calculated with

the linear trend data in Figures 3 and 4 (for T2 and T4, respectively). All datasets

were transformed to the RSS grid and masked with RSS coverage. Two forms of
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correlation are given: with spatial means included (c) and spatial means subtracted

(r; Barnett and Schlesinger, 1987). The latter are underlined.

Figure 1: Effect of vertical resolution of the input atmospheric temperature data

on estimates of global-scale pLRT changes in ERA-40. pLRT was calculated from

ERA-40 temperatures archived at two different vertical resolutions: 23 pressure lev-

els (L23) and 60 model levels (L60; see Section 3.1). Monthly-mean anomalies are

either globally-averaged (a), or averaged over 90◦N-60◦S (b). Anomalies were defined

relative to climatological monthly means over January 1979 to December 2001.

Figure 2: Effect of vertical resolution of the input temperature data on the estimated

patterns of pLRT change in ERA-40. pLRT calculations were performed with both L23

and L60 atmospheric temperature data (a,b). Linear pLRT trends over 1979-2001 were

calculated using monthly-mean anomaly data, with anomalies defined as in Fig. 1.

The L60 and L23 trend patterns are highly correlated (r = 0.94).

Figure 3: Atmospheric temperature profiles in ERA-40 at a selected Antarctic grid-

point (84.67◦S, 128.25◦E). Temperatures are monthly-mean values for May, June,

July, and August of 1958. Crosses denote the pressure of the lapse-rate tropopause

estimated with the standard WMO criterion (WMO, 1957; Reichler et al.; 2003).

Note the unrealistically high pLRT value in August 1958 (Section 3.1).

Figure 4: Time series of monthly-mean pLRT anomalies from the NCEP-50 and

ERA-40 reanalyses and the ensemble mean of the PCM ALL experiment (Section 2).

Results are spatial averages over 90◦N-60◦S. Bold lines denote data that were low-

pass filtered to highlight changes on 5-10 year timescales; thin dotted lines are the

raw monthly-mean anomalies. ERA-40 pLRT values were calculated using the L23
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temperature data (Section 3.1). Reanalysis pLRT anomalies were defined relative to

climatological monthly means computed over 1979-2001, while PCM anomalies were

expressed relative to a 1979-1999 reference period.

Figure 5: Time series of global-mean, monthly-mean anomalies in lower stratospheric

temperatures (MSU T4). Results are processed MSU T4 measurements (UAH, RSS)

and synthetic T4 temperatures calculated from NCEP-50, ERA-40, and the ensemble

mean of the PCM ALL experiment (Section 2.2). For definition of anomalies and

explanation of bold and thin lines, refer to Fig. 4.

Figure 6: Conceptual model for the effect of three different forcings on tropopause

height. The solid black lines are the baseline atmospheric temperature profiles. Forc-

ing by stratospheric ozone depletion, increases in well-mixed greenhouse gases, and

volcanic eruptions can perturb this base state. The effect of the first two forcings is to

increase tropopause height (indicated by the upward-pointing arrows), while volcanic

forcing causes height decreases.

Figure 7: Tropopause pressure changes in reanalyses and PCM. Least-squares linear

trends in monthly-mean pLRT data (in hPa/decade) were computed over 1958-2001

for ERA-40 and NCEP-50 (a,b). ERA-40 and NCEP-50 trends are also shown for the

shorter period 1979-2001 (c,d). For PCM, pLRT trends over 1979-1999 were calculated

from the ensemble mean of the ALL and ANTHRO experiments (e,f).

Figure 8: Detection times for PCM tropopause height fingerprints in NCEP-50 and

ERA-40 reanalyses. The detection analysis uses both the ‘mean included’ and ‘mean

removed’ fingerprints calculated from the PCM ANTHRO experiment, with a 5%

significance level as the detection threshold (Section 5). The longer the colored bar,
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the earlier the detection time. If no bar is present, fingerprints could not be identified

before the final year of the reanalyses (2001). ‘RAW’ denotes detection times for

non-optimized fingerprints. Optimized detection times are given for a single choice of

the truncation dimension m (m = 15; see APPENDIX B). To avoid the introduction

of artificial skill, the model control run used for optimization was always different

from the control run used for estimating natural variability statistics.

Figure 9: Time series of global-mean, monthly-mean anomalies in processed and

synthetic tropospheric temperatures (MSU T2). For further details, refer to Fig. 5.

The colored rectangles on the time axis use a composite index of SST and circulation

changes (Smith and Sardeshmukh, 2000) to indicate the timing and duration of ob-

served El Niño (in red) and La Niña (in blue) events, which influence the variability

of T2 data in reanalyses, UAH, and RSS (Wigley 2000; Santer et al., 2003c).

Figure 10: Consistency between changes in synthetic T2 temperatures in ERA-40

and the PCM ALL experiment. Bold lines denote the low-pass filtered T2 data in

ERA-40 (black) and in the ALL ensemble mean (blue). The yellow envelope defines

the range between the highest and lowest T2 anomalies in the four realizations of ALL.

The range was smoothed with the same low-pass filter that was applied to ERA-40

and the ALL ensemble mean. The thin dotted lines are the unfiltered T2 anomalies,

defined as in Fig. 4. The colored rectangles provide information on observed ENSO

events (see Fig. 9).

Figure 11: Tropospheric temperature changes in reanalyses and PCM. Least-squares

linear trends over 1979-2001 in monthly-mean processed or synthetic MSU T2 tem-

peratures from ERA-40 (a), RSS (b), UAH (c), and NCEP-50 (d). Also shown are

T2 trends over 1979-1999 in the ensemble mean of the PCM ALL experiment (e).
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Figure 12: Stratospheric temperature changes in reanalyses and PCM. Least-squares

linear trends over 1979-2001 in monthly-mean processed or synthetic MSU T4 tem-

peratures from ERA-40 (a), RSS (b), UAH (c), and NCEP-50 (d). Also shown are

T4 trends over 1979-1999 in the ensemble mean of the PCM ALL experiment (e).
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Table 1

Area Levels Trend Std. Error Std. Dev. AR-1

NCEP-50 S 17 −1.79 *** ±0.37 1.95 0.73

ERA-40 G 60 −2.36 *** ±0.47 2.36 0.78

ERA-40 G 23 −2.66 *** ±0.48 2.46 0.80

pLRT ERA-40 S 60 −1.78 *** ±0.38 2.00 0.73

ERA-40 S 23 −2.12 *** ±0.38 2.12 0.75

PCM ALL S 18 −1.13 ±1.41 2.52 0.92

UAH G 1 −0.49 * ±0.29 0.49 0.96

RSS G 1 −0.39 * ±0.22 0.44 0.94

T4 NCEP-50 G 17 −0.82 *** ±0.26 0.69 0.94

ERA-40 G 23 −0.30 ±0.30 0.42 0.96

PCM ALL G 18 −0.35 0.58 0.98

UAH G 1 0.01 ±0.05 0.18 0.78

RSS G 1 0.09 ** ±0.05 0.19 0.78

T2 NCEP-50 G 17 −0.11 ** ±0.06 0.21 0.81

ERA-40 G 23 0.08 ** ±0.05 0.20 0.76

PCM ALL G 18 0.07 ±0.06 0.20 0.80

G: Global-mean.

S: Spatial average over 90◦N-60◦S.
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Table 2

T4 results UAH RSS NCEP-50 ERA-40

UAH 1.00 0.99 0.95 0.96

RSS 0.99 1.00 0.91 0.97

NCEP-50 0.92 0.90 1.00 0.88

ERA-40 0.98 0.97 0.93 1.00

T2 results UAH RSS NCEP-50 ERA-40

UAH 1.00 0.94 0.81 0.92

RSS 0.98 1.00 0.67 0.93

NCEP-50 0.88 0.89 1.00 0.68

ERA-40 0.94 0.93 0.86 1.00
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Table 3

T4 results UAH RSS NCEP-50 ERA-40

UAH 1.00 0.99 0.91 0.98

RSS 0.97 1.00 0.91 0.98

NCEP-50 0.30 0.47 1.00 0.86

ERA-40 0.97 0.96 0.41 1.00

T2 results UAH RSS NCEP-50 ERA-40

UAH 1.00 0.80 0.27 0.42

RSS 0.95 1.00 −0.15 0.73

NCEP-50 0.46 0.51 1.00 −0.08

ERA-40 0.50 0.55 0.74 1.00
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